A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication

نویسندگان

  • Wesley L. Hung
  • Ying Wang
  • Jyothsna Chitturi
  • Mei Zhen
چکیده

Adverse environmental conditions trigger C. elegans larvae to activate an alternative developmental program, termed dauer diapause, which renders them stress resistant. High-level insulin signaling prevents constitutive dauer formation. However, it is not fully understood how animals assess conditions to choose the optimal developmental program. Here, we show that insulin-like peptide (ILP)-mediated neuron-intestine communication plays a role in this developmental decision. Consistent with, and extending, previous findings, we show that the simultaneous removal of INS-4, INS-6 and DAF-28 leads to fully penetrant constitutive dauer formation, whereas the removal of INS-1 and INS-18 significantly inhibits constitutive dauer formation. These ligands are processed by the proprotein convertases PC1/KPC-1 and/or PC2/EGL-3. The agonistic and antagonistic ligands are expressed by, and function in, neurons to prevent or promote dauer formation. By contrast, the insulin receptor DAF-2 and its effector, the FOXO transcription factor DAF-16, function solely in the intestine to regulate the decision to enter diapause. These results suggest that the nervous system normally establishes an agonistic ILP-dominant paradigm to inhibit intestinal DAF-16 activation and allow reproductive development. Under adverse conditions, a switch in the agonistic-antagonistic ILP balance activates intestinal DAF-16, which commits animals to diapause.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dev103846 1..13

Adverse environmental conditions trigger C. elegans larvae to activate an alternative developmental program, termed dauer diapause, which renders them stress resistant. High-level insulin signaling prevents constitutive dauer formation. However, it is not fully understood how animals assess conditions to choose the optimal developmental program. Here, we show that insulin-like peptide (ILP)-med...

متن کامل

Dev103846 1767..1779

Adverse environmental conditions trigger C. elegans larvae to activate an alternative developmental program, termed dauer diapause, which renders them stress resistant. High-level insulin signaling prevents constitutive dauer formation. However, it is not fully understood how animals assess conditions to choose the optimal developmental program. Here, we show that insulin-like peptide (ILP)-med...

متن کامل

Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans.

Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-...

متن کامل

Oxidative stress enzymes are required for DAF-16-mediated immunity due to generation of reactive oxygen species by Caenorhabditis elegans.

Caenorhabditis elegans has recently been developed as a model for microbial pathogenesis, yet little is known about its immunological defenses. Previous work implicated insulin signaling in mediating pathogen resistance in a manner dependent on the transcriptional regulator DAF-16, but the mechanism has not been elucidated. We present evidence that C. elegans, like mammalian phagocytes, produce...

متن کامل

A microRNA program in the C. elegans hypodermis couples to intestinal mTORC2/PQM-1 signaling to modulate fat transport.

Animals integrate metabolic, developmental, and environmental information before committing key resources to reproduction. In Caenorhabditis elegans, adult animals transport fat from intestinal cells to the germline to promote reproduction. We identified a microRNA (miRNA)-regulated developmental timing pathway that functions in the hypodermis to nonautonomously coordinate the mobilization of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2014